Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
bioRxiv ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37986885

RESUMEN

A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life. Infant rhesus macaques (RMs) received either BG505 SOSIP or the germline-targeting BG505 GT1.1 SOSIP (n=5/group) with the 3M-052-SE adjuvant at 0, 6, and 12 weeks of age. All infant RMs were then boosted with the BG505 SOSIP at weeks 26, 52 and 78, mimicking a pediatric immunization schedule of multiple vaccine boosts within the first two years of life. Both immunization strategies induced durable, high magnitude binding antibodies and plasma autologous virus neutralization that primarily targeted the CD4-binding site (CD4bs) or C3/465 epitope. Notably, three BG505 GT1.1-immunized infants exhibited a plasma HIV neutralization signature reflective of VRC01-like CD4bs bnAb precursor development and heterologous virus neutralization. Finally, infant RMs developed precursor bnAb responses at a similar frequency to that of adult RMs receiving a similar immunization strategy. Thus, a multi-dose immunization regimen with bnAb lineage designed SOSIPs is a promising strategy for inducing protective HIV bnAb responses in childhood prior to adolescence when sexual HIV exposure risk begins.

3.
Nat Commun ; 14(1): 4789, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553348

RESUMEN

Route of immunization can markedly influence the quality of immune response. Here, we show that intradermal (ID) but not intramuscular (IM) modified vaccinia Ankara (MVA) vaccinations provide protection from acquisition of intravaginal tier2 simian-human immunodeficiency virus (SHIV) challenges in female macaques. Both routes of vaccination induce comparable levels of serum IgG with neutralizing and non-neutralizing activities. The protection in MVA-ID group correlates positively with serum neutralizing and antibody-dependent phagocytic activities, and envelope-specific vaginal IgA; while the limited protection in MVA-IM group correlates only with serum neutralizing activity. MVA-ID immunizations induce greater germinal center Tfh and B cell responses, reduced the ratio of Th1 to Tfh cells in blood and showed lower activation of intermediate monocytes and inflammasome compared to MVA-IM immunizations. This lower innate activation correlates negatively with induction of Tfh responses. These data demonstrate that the MVA-ID vaccinations protect against intravaginal SHIV challenges by modulating the innate and T helper responses.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Vaccinia , Animales , Humanos , Femenino , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Vaccinia/prevención & control , Macaca mulatta , Virus Vaccinia , Vacunación , VIH , Anticuerpos Antivirales
4.
Front Immunol ; 14: 1139402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153584

RESUMEN

Introduction: An efficacious HIV vaccine will need to elicit a complex package of innate, humoral, and cellular immune responses. This complex package of responses to vaccine candidates has been studied and yielded important results, yet it has been a recurring challenge to determine the magnitude and protective effect of specific in vivo immune responses in isolation. We therefore designed a single, viral-spike-apical, epitope-focused V2 loop immunogen to reveal individual vaccine-elicited immune factors that contribute to protection against HIV/SIV. Method: We generated a novel vaccine by incorporating the V2 loop B-cell epitope in the cholera toxin B (CTB) scaffold and compared two new immunization regimens to a historically protective 'standard' vaccine regimen (SVR) consisting of 2xDNA prime boosted with 2xALVAC-SIV and 1xΔV1gp120. We immunized a cohort of macaques with 5xCTB-V2c vaccine+alum intramuscularly simultaneously with topical intrarectal vaccination of CTB-V2c vaccine without alum (5xCTB-V2/alum). In a second group, we tested a modified version of the SVR consisting of 2xDNA prime and boosted with 1xALVAC-SIV and 2xALVAC-SIV+CTB-V2/alum, (DA/CTB-V2c/alum). Results: In the absence of any other anti-viral antibodies, V2c epitope was highly immunogenic when incorporated in the CTB scaffold and generated highly functional anti-V2c antibodies in the vaccinated animals. 5xCTB-V2c/alum vaccination mediated non-neutralizing ADCC activity and efferocytosis, but produced low avidity, trogocytosis, and no neutralization of tier 1 virus. Furthermore, DA/CTB-V2c/alum vaccination also generated lower total ADCC activity, avidity, and neutralization compared to the SVR. These data suggest that the ΔV1gp120 boost in the SVR yielded more favorable immune responses than its CTB-V2c counterpart. Vaccination with the SVR generates CCR5- α4ß7+CD4+ Th1, Th2, and Th17 cells, which are less likely to be infected by SIV/HIV and likely contributed to the protection afforded in this regimen. The 5xCTB-V2c/alum regimen likewise elicited higher circulating CCR5- α4ß7+ CD4+ T cells and mucosal α4ß7+ CD4+ T cells compared to the DA/CTB-V2c/alum regimen, whereas the first cell type was associated with reduced risk of viral acquisition. Conclusion: Taken together, these data suggest that individual viral spike B-cell epitopes can be highly immunogenic and functional as isolated immunogens, although they might not be sufficient on their own to provide full protection against HIV/SIV infection.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Animales , Toxina del Cólera , Epítopos , Macaca mulatta , Infecciones por VIH/prevención & control
5.
Cell Rep Med ; 4(4): 101003, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37044090

RESUMEN

Targeting germline (gl-) precursors of broadly neutralizing antibodies (bNAbs) is acknowledged as an important strategy for HIV-1 vaccines. The VRC01-class of bNAbs is attractive because of its distinct genetic signature. However, VRC01-class bNAbs often require extensive somatic hypermutation, including rare insertions and deletions. We describe a BG505 SOSIP trimer, termed GT1.2, to optimize binding to gl-CH31, the unmutated common precursor of the CH30-34 bNAb lineage that acquired a large CDRH1 insertion. The GT1.2 trimer activates gl-CH31 naive B cells in knock-in mice, and B cell responses could be matured by selected boosting immunogens to generate cross-reactive Ab responses. Next-generation B cell sequencing reveals selection for VRC01-class mutations, including insertions in CDRH1 and FWR3 at positions identical to VRC01-class bNAbs, as well as CDRL1 deletions and/or glycine substitutions to accommodate the N276 glycan. These results provide proof of concept for vaccine-induced affinity maturation of B cell lineages that require rare insertions and deletions.


Asunto(s)
Seropositividad para VIH , VIH-1 , Ratones , Animales , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , VIH-1/genética , Anticuerpos Anti-VIH , Vacunación
6.
Viruses ; 14(12)2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36560823

RESUMEN

HIV vaccine mediated efficacy, using an expanded live attenuated recombinant varicella virus-vectored SIV rSVV-SIVgag/env vaccine prime with adjuvanted SIV-Env and SIV-Gag protein boosts, was evaluated in a female rhesus macaques (RM) model against repeated intravaginal SIV challenges. Vaccination induced anti-SIV IgG responses and neutralizing antibodies were found in all vaccinated RMs. Three of the eight vaccinated RM remained uninfected (vaccinated and protected, VP) after 13 repeated challenges with the pathogenic SIVmac251-CX-1. The remaining five vaccinated and infected (VI) macaques had significantly reduced plasma viral loads compared with the infected controls (IC). A significant increase in systemic central memory CD4+ T cells and mucosal CD8+ effector memory T-cell responses was detected in vaccinated RMs compared to controls. Variability in lymph node SIV-Gag and Env specific CD4+ and CD8+ T cell cytokine responses were detected in the VI RMs while all three VP RMs had more durable cytokine responses following vaccination and prior to challenge. VI RMs demonstrated predominately SIV-specific monofunctional cytokine responses while the VP RMs generated polyfunctional cytokine responses. This study demonstrates that varicella virus-vectored SIV vaccination with protein boosts induces a 37.5% efficacy rate against pathogenic SIV challenge by generating mucosal memory, virus specific neutralizing antibodies, binding antibodies, and polyfunctional T-cell responses.


Asunto(s)
Varicela , Vacunas contra el SIDAS , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Femenino , Virus de la Inmunodeficiencia de los Simios/genética , Macaca mulatta , Vacunas Sintéticas/genética , Vacunas contra el SIDAS/genética , Anticuerpos Neutralizantes , Citocinas , Anticuerpos Antivirales
7.
iScience ; 25(11): 105473, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36405776

RESUMEN

Once naive B cells expressing germline VRC01-class B cell receptors become activated by germline-targeting immunogens, they enter germinal centers and undergo affinity maturation. Booster immunizations with heterologous Envs are required for the full maturation of VRC01-class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or Rehydragel, that activate different pathways of the innate immune system, influence the rate and type of somatic mutations accumulated by VRC01-class BCRs that become activated by the germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster immunogen. We report that although the adjuvant used had no influence on the durability of plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.

8.
PLoS Pathog ; 18(11): e1010945, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36395347

RESUMEN

Broadly neutralizing antibodies (bNAbs) have remarkable breadth and potency against most HIV-1 subtypes and are able to prevent HIV-1 infection in animal models. However, bNAbs are extremely difficult to induce by vaccination. Defining the developmental pathways towards neutralization breadth can assist in the design of strategies to elicit protective bNAb responses by vaccination. Here, HIV-1 envelope glycoproteins (Env)-specific IgG+ B cells were isolated at various time points post infection from an HIV-1 infected elite neutralizer to obtain monoclonal antibodies (mAbs). Multiple antibody lineages were isolated targeting distinct epitopes on Env, including the gp120-gp41 interface, CD4-binding site, silent face and V3 region. The mAbs each neutralized a diverse set of HIV-1 strains from different clades indicating that the patient's remarkable serum breadth and potency might have been the result of a polyclonal mixture rather than a single bNAb lineage. High-resolution cryo-electron microscopy structures of the neutralizing mAbs (NAbs) in complex with an Env trimer generated from the same individual revealed that the NAbs used multiple strategies to neutralize the virus; blocking the receptor binding site, binding to HIV-1 Env N-linked glycans, and disassembly of the trimer. These results show that diverse NAbs can complement each other to achieve a broad and potent neutralizing serum response in HIV-1 infected individuals. Hence, the induction of combinations of moderately broad NAbs might be a viable vaccine strategy to protect against a wide range of circulating HIV-1 viruses.


Asunto(s)
Seropositividad para VIH , VIH-1 , Animales , Anticuerpos ampliamente neutralizantes , Microscopía por Crioelectrón , Anticuerpos Monoclonales , Proteína gp120 de Envoltorio del VIH
9.
Nat Commun ; 13(1): 4515, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922441

RESUMEN

A major goal of current HIV-1 vaccine design efforts is to induce broadly neutralizing antibodies (bNAbs). The VH1-2-derived bNAb IOMA directed to the CD4-binding site of the HIV-1 envelope glycoprotein is of interest because, unlike the better-known VH1-2-derived VRC01-class bNAbs, it does not require a rare short light chain complementarity-determining region 3 (CDRL3). Here, we describe three IOMA-class NAbs, ACS101-103, with up to 37% breadth, that share many characteristics with IOMA, including an average-length CDRL3. Cryo-electron microscopy revealed that ACS101 shares interactions with those observed with other VH1-2 and VH1-46-class bNAbs, but exhibits a unique binding mode to residues in loop D. Analysis of longitudinal sequences from the patient suggests that a transmitter/founder-virus lacking the N276 glycan might have initiated the development of these NAbs. Together these data strengthen the rationale for germline-targeting vaccination strategies to induce IOMA-class bNAbs and provide a wealth of sequence and structural information to support such strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Neutralizantes , Antígenos Virales , Sitios de Unión , Anticuerpos ampliamente neutralizantes , Antígenos CD4/inmunología , Regiones Determinantes de Complementariedad , Microscopía por Crioelectrón , Glicoproteínas , Anticuerpos Anti-VIH , Humanos
10.
PLoS Pathog ; 18(6): e1010574, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35709309

RESUMEN

Both SIV and SHIV are powerful tools for evaluating antibody-mediated prevention and treatment of HIV-1. However, owing to a lack of rhesus-derived SIV broadly neutralizing antibodies (bnAbs), testing of bnAbs for HIV-1 prevention or treatment has thus far been performed exclusively in the SHIV NHP model using bnAbs from HIV-1-infected individuals. Here we describe the isolation and characterization of multiple rhesus-derived SIV bnAbs capable of neutralizing most isolates of SIV. Eight antibodies belonging to two clonal families, ITS102 and ITS103, which target unique epitopes in the CD4 binding site (CD4bs) region, were found to be broadly neutralizing and together neutralized all SIV strains tested. A rare feature of these bnAbs and two additional antibody families, ITS92 and ITS101, which mediate strain-specific neutralizing activity against SIV from sooty mangabeys (SIVsm), was their ability to achieve near complete (i.e. 100%) neutralization of moderately and highly neutralization-resistant SIV. Overall, these newly identified SIV bnAbs highlight the potential for evaluating HIV-1 prophylactic and therapeutic interventions using fully simian, rhesus-derived bnAbs in the SIV NHP model, thereby circumventing issues related to rapid antibody clearance of human-derived antibodies, Fc mismatch and limited genetic diversity of SHIV compared to SIV.


Asunto(s)
Infecciones por VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Macaca mulatta
11.
PLoS Pathog ; 18(6): e1010507, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35714165

RESUMEN

The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Endocitosis , Productos del Gen env/genética , Macaca mulatta/metabolismo , Macaca nemestrina , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/metabolismo
13.
J Virol ; 96(11): e0023122, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35536018

RESUMEN

Despite the worldwide availability of antiretroviral therapy (ART), approximately 150,000 pediatric HIV infections continue to occur annually. ART can dramatically reduce HIV mother-to-child transmission (MTCT), but inconsistent drug access and adherence, as well as primary maternal HIV infection during pregnancy and lactation are major barriers to eliminating vertical HIV transmission. Thus, immunologic strategies to prevent MTCT, such as an HIV vaccine, will be required to attain an HIV-free generation. A primary goal of HIV vaccine research has been to elicit broadly neutralizing antibodies (bnAbs) given the ability of passive bnAb immunization to protect against sensitive strains, yet we previously observed that HIV-transmitting mothers have more plasma neutralization breadth than nontransmitting mothers. Additionally, we have identified infant transmitted/founder (T/F) viruses that escape maternal bnAb responses. In this study, we examine a cohort of postpartum HIV-transmitting women with neutralization breadth to determine if certain maternal bnAb specificities drive the selection of infant T/F viruses. Using HIV pseudoviruses that are resistant to neutralizing antibodies targeting common bnAb epitopes, we mapped the plasma bnAb specificities of this cohort. Significantly more transmitting women with plasma bnAb activity had a mappable plasma bnAb specificity (six of seven, or 85.7%) compared to that of nontransmitting women with plasma bnAb activity (7 of 21, or 33.3%, P = 0.029 by 2-sided Fisher exact test). Our study suggests that having multispecific broad activity and/or uncommon epitope-specific bnAbs in plasma may be associated with protection against the vertical HIV transmission in the setting of maternal bnAb responses. IMPORTANCE As mother to child transmission (MTCT) of HIV plays a major part in the persistence of the HIV/AIDS epidemic and bnAb-based passive and active vaccines are a primary strategy for HIV prevention, research in this field is of great importance. While previous MTCT research has investigated the neutralizing antibody activity of HIV-infected women, this is, to our knowledge, the largest study identifying differences in bnAb specificity of maternal plasma between transmitting and nontransmitting women. Here, we show that among HIV-infected women with broad and potent neutralization activity, more postpartum-transmitting women had a mappable plasma broadly neutralizing antibody (bnAb) specificity, compared to that of nontransmitting women, suggesting that the nontransmitting women more often have multispecific bnAb responses or bnAb responses that target uncommon epitopes. Such responses may be required for protection against vertical HIV transmission in the setting of maternal bnAb responses.


Asunto(s)
Formación de Anticuerpos , Anticuerpos ampliamente neutralizantes , Infecciones por VIH , Seropositividad para VIH , Transmisión Vertical de Enfermedad Infecciosa , Vacunas contra el SIDA , Epítopos , Femenino , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/transmisión , VIH-1 , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Embarazo
14.
NPJ Vaccines ; 7(1): 44, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449174

RESUMEN

Integrase Defective Lentiviral Vectors (IDLVs) represent an attractive vaccine platform for delivering HIV-1 antigens, given their ability to induce specific and persistent immune responses in both mice and non-human primates (NHPs). Recent advances in HIV-1 immunogen design demonstrated that native-like HIV-1 Envelope (Env) trimers that mimic the structure of virion-associated Env induce neutralization breadth in rabbits and macaques. Here, we describe the development of an IDLV-based HIV-1 vaccine expressing either soluble ConSOSL.UFO.664 or membrane-tethered ConSOSL.UFO.750 native-like Env immunogens with enhanced bNAb epitopes exposure. We show that IDLV can be pseudotyped with properly folded membrane-tethered native-like UFO.750 trimers. After a single IDLV injection in BALB/c mice, IDLV-UFO.750 induced a faster humoral kinetic as well as higher levels of anti-Env IgG compared to IDLV-UFO.664. IDLV-UFO.750 vaccinated cynomolgus macaques developed unusually long-lasting anti-Env IgG antibodies, as underlined by their remarkable half-life both after priming and boost with IDLV. After boosting with recombinant ConM SOSIP.v7 protein, two animals developed neutralization activity against the autologous tier 1B ConS virus mediated by V1/V2 and V3 glycan sites responses. By combining the possibility to display stabilized trimeric Env on the vector particles with the ability to induce sustained humoral responses, IDLVs represent an appropriate strategy for delivering rationally designed antigens to progress towards an effective HIV-1 vaccine.

15.
NPJ Vaccines ; 7(1): 27, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228534

RESUMEN

Soluble HIV-1 envelope glycoprotein (Env) immunogens are a prime constituent of candidate vaccines designed to induce broadly neutralizing antibodies. Several lines of evidence suggest that enhancing Env immunogen thermostability can improve neutralizing antibody (NAb) responses. Here, we generated BG505 SOSIP.v9 trimers, which displayed virtually no reactivity with non-neutralizing antibodies and showed increased global and epitope thermostability, compared to previous BG505 SOSIP versions. Chemical crosslinking of BG505 SOSIP.v9 further increased the melting temperature to 91.3 °C, which is almost 25 °C higher than that of the prototype SOSIP.664 trimer. Next, we compared the immunogenicity of a palette of BG505-based SOSIP trimers with a gradient of thermostabilities in rabbits. We also included SOSIP.v9 proteins in which a strain-specific immunodominant epitope was masked by glycans to redirect the NAb response to other subdominant epitopes. We found that increased trimer thermostability correlated with increased potency and consistency of the autologous NAb response. Furthermore, glycan masking steered the NAb response to subdominant epitopes without decreasing the potency of the autologous NAb response. In summary, SOSIP.v9 trimers and their glycan masked versions represent an improved platform for HIV-1 Env based vaccination strategies.

16.
Cell Rep ; 38(9): 110436, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235790

RESUMEN

HIV-1 clade C envelope immunogens that elicit both neutralizing and non-neutralizing V1V2-scaffold-specific antibodies (protective correlates from RV144 human trial) are urgently needed due to the prevalence of this clade in the most impacted regions worldwide. To achieve this, we introduce structure-guided changes followed by consensus-C-sequence-guided optimizations at the V2 region to generate UFO-v2-RQH173 trimer. This improves the abundance of well-formed trimers. Following the immunization of rabbits, the wild-type protein fails to elicit any autologous neutralizing antibodies, but UFO-v2-RQH173 elicits both autologous neutralizing and broad V1V2-scaffold antibodies. The variant with a 173Y modification in the V2 region, most prevalent among HIV-1 sequences, shows decreased ability in displaying a native-like V1V2 epitope with time in vitro and elicited antibodies with lower neutralizing and higher V1V2-scaffold activities. Our results identify a stabilized clade C trimer capable of eliciting improved neutralizing and V1V2-scaffold antibodies and reveal the importance of the V2 region in tuning this.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Animales , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , Antígenos VIH , Conejos , Productos del Gen env del Virus de la Inmunodeficiencia Humana
17.
Vaccines (Basel) ; 10(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35214753

RESUMEN

As demonstrated by the recent COVID pandemic, vaccines can reduce the burden arising from infectious agents. Adenoviruses (Ads) with deletion of the early region 1B55K (ΔE1B Ad) are currently being explored for use in vaccine delivery. ΔE1B Ads are different from Ads with deletions in early region 1 and early region 3 (ΔE1/E3) used in most Ad vaccine vectors in that they contain the Ad early region 1A (E1A), and therefore the ability to replicate. Common to almost all Ads that are being explored for clinical use is the Ad early region 4 (E4). Among the E4 genes is open reading frame 1 (E4orf1), which mediates signals through the PI3-kinase/Akt pathway that is known to modulate immune responses. This suggests that E4orf1 might also modulate immune responses, although it has remained unexplored in ΔE1B Ad. Here, we show that cells infected with an E1B55K and E4orf1-deleted (ΔE41) Ad exhibited reduced levels of phosphorylated Akt (Ser473 and Thr308)) and expressed different intrinsic innate immune cytokines from those induced in cells infected with an E4orf1-containing, ΔE1B parental Ad that exhibited elevated levels of phosphorylated Akt. Rhesus macaques immunized with a ΔE41 Ad that expressed rhFLSC (HIV-1BaL gp120 linked to rhesus CD4 D1 and D2), exhibited higher levels of rhFLSC-specific interferon γ-producing memory T-cells, higher titers of rhFLSC-specific IgG1 binding antibody in serum, and antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC) with greater killing capacity than the ΔE1B Ad. Therefore, E4orf1, perhaps by acting through the PI3-kinase/Akt pathway, limits intrinsic innate and system-wide adaptive immune responses that are important for improved ΔE1B Ad-based vaccines.

18.
J Virol ; 96(1): e0155221, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34669426

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) trimeric envelope glycoprotein (Env) is heavily glycosylated, creating a dense glycan shield that protects the underlying peptidic surface from antibody recognition. The absence of conserved glycans, due to missing potential N-linked glycosylation sites (PNGS), can result in strain-specific, autologous neutralizing antibody (NAb) responses. Here, we sought to gain a deeper understanding of the autologous neutralization by introducing holes in the otherwise dense glycan shields of the AMC011 and AMC016 SOSIP trimers. Specifically, when we knocked out the N130 and N289 glycans, which are absent from the well-characterized B41 SOSIP trimer, we observed stronger autologous NAb responses. We also analyzed the highly variable NAb responses induced in rabbits by diverse SOSIP trimers from subtypes A, B, and C. Statistical analysis, using linear regression, revealed that the cumulative area exposed on a trimer by glycan holes correlates with the magnitude of the autologous NAb response. IMPORTANCE Forty years after the first description of HIV-1, the search for a protective vaccine is still ongoing. The sole target for antibodies that can neutralize the virus are the trimeric envelope glycoproteins (Envs) located on the viral surface. The glycoprotein surface is covered with glycans that shield off the underlying protein components from recognition by the immune system. However, the Env trimers of some viral strains have holes in the glycan shield. Immunized animals developed antibodies against such glycan holes. These antibodies are generally strain specific. Here, we sought to gain a deeper understanding of what drives these specific immune responses. First, we show that strain-specific neutralizing antibody responses can be increased by creating artificial holes in the glycan shield. Second, when studying a diverse set of Env trimers with different characteristics, we found that the surface area of the glycan holes contributes prominently to the induction of strain-specific neutralizing antibodies.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/inmunología , Polisacáridos/metabolismo , Multimerización de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Vacunas contra el SIDA/inmunología , Aminoácidos/química , Aminoácidos/inmunología , Aminoácidos/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Antígenos Virales/inmunología , Glicosilación , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Inmunización , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína/inmunología , Conejos , Eliminación de Secuencia , Relación Estructura-Actividad , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
19.
J Infect Dis ; 225(10): 1731-1740, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34962990

RESUMEN

BACKGROUND: Recent studies have indicated that broadly neutralizing antibodies (bnAbs) in children may develop earlier after human immunodeficiency virus (HIV) infection compared to adults. METHODS: We evaluated plasma from 212 antiretroviral therapy-naive children with HIV (1-3 years old). Neutralization breadth and potency was assessed using a panel of 10 viruses and compared to adults with chronic HIV. The magnitude, epitope specificity, and immunoglobulin (Ig)G subclass distribution of Env-specific antibodies were assessed using a binding antibody multiplex assay. RESULTS: One-year-old children demonstrated neutralization breadth comparable to chronically infected adults, whereas 2- and 3-year-olds exhibited significantly greater neutralization breadth (P = .014). Likewise, binding antibody responses increased with age, with levels in 2- and 3-year-old children comparable to adults. Overall, there was no significant difference in antibody specificities or IgG subclass distribution between the pediatric and adult cohorts. It is interesting to note that the neutralization activity was mapped to a single epitope (CD4 binding site, V2 or V3 glycans) in only 5 of 38 pediatric broadly neutralizing samples, which suggests that most children may develop a polyclonal neutralization response. CONCLUSIONS: These results contribute to a growing body of evidence suggesting that initiating HIV immunization early in life may present advantages for the development of broadly neutralizing antibody responses.


Asunto(s)
Infecciones por VIH , VIH-1 , Adulto , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Niño , Preescolar , Epítopos , Anticuerpos Anti-VIH , Humanos , Inmunoglobulina G , Lactante
20.
Vaccines (Basel) ; 9(7)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34358190

RESUMEN

We have constructed bispecific immunoglobulin-like immunoadhesins that bind to both the HIV-envelope glycoproteins: gp120 and gp41. These immunoadhesins have N terminal domains of human CD4 engrafted onto the N-terminus of the heavy chain of human anti-gp41 mAb 7B2. Binding of these constructs to recombinant Env and their antiviral activities were compared to that of the parental mAbs and CD4, as well as to control mAbs. The CD4/7B2 constructs bind to both gp41 and gp140, as well as to native Env expressed on the surface of infected cells. These constructs deliver cytotoxic immunoconjugates to HIV-infected cells, but not as well as a mixture of 7B2 and sCD4, and opsonize for antibody-mediated phagocytosis. Most surprisingly, given that 7B2 neutralizes weakly, if at all, is that the chimeric CD4/7B2 immunoadhesins exhibit broad and potent neutralization of HIV, comparable to that of well-known neutralizing mAbs. These data add to the growing evidence that enhanced neutralizing activity can be obtained with bifunctional mAbs/immunoadhesins. The enhanced neutralization activity of the CD4/7B2 chimeras may result from cross-linking of the two Env subunits with subsequent inhibition of the pre-fusion conformational events that are necessary for entry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...